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In a recent papefC. DeW. Van Siclen, Phys. Rev. B9, 2804 (1999], a random-walk algorithm was
proposed as the best method to calculate transport properties of composite materials. It was claimed that the
method is applicable both to discrete and continuum systems. The limitations of the proposed algorithm are
analyzed. We show that the algorithm does not capture the peculiarities of continuum siestpnisecks”
or “choke points”) and we argue that it is the stochastic analog of the finite-difference method.

PACS numbse(s): 05.60—k, 44.30:+v, 91.60.Pn, 66.36:h

Van Siclen has presented a lattice random-walk method toaptured by his algorithm. Moreover, his proposed procedure
calculate the transport properties of discrete models of comis the stochastic analog of the standard finite-difference
posite material§l]. The method belongs to a broad class ofmethod. Thus, Van Siclen’s claim that his method is the only
discrete Brownian walker diffusion models that have beerviable and best “exact” method to compute transport prop-
extensively studied2]. Considering a density of walker erties[1] is not the case and has the same limitations as the
populations in distinct phase domains, Van Siclen utilized arfinite-difference scheme.
expression for the probability; ; that the walker success- It is known that the contribution from transport through
fully moves across a domain boundary from phatephase very narrow “necks” or “choke points” that occur in con-

j [3]: pij=0;/(0i+ gj), wherea;, o; are the corresponding tinuum systems can lead to effective transport properties that
local conductivities. Then theffectiveconductivity o, of a  are dramatically different from lattice modelg—9]. Such
d-dimensional composite medium can be readily obtain bychoke points become numerous and especially important
monitoring the walker displacemerf® and associated mean near the percolation threshold. These contributions are not
time intervals 7, in each visited phase, sincer, included in Van Siclen’s algorithm which involves a stan-
=3,R/3(2d707 1) [1,2,4,5. dard discretization of the problem. Moreover, he equates his

For practical calculations, Van Siclen introduced a com-Standard lattice walk with a continuum walk on a digitized
putationally efficient “variable residence time algorithm” in representation of a continuum systéfj. These two situa-
which each walker attempts to move to one of the adjacertions are indeed not the same for the aforementioned reasons,
two-dimensional2D) sites is always successful but it takes al-€., transport in digitized media may be dominated by choke
variable time interval to accomplish it. The algorithm re- Or “corner” points that connect two diagonal pixel neigh-
quires knowledge of the probabilit; ; for a successful bors[8,9]. The_se armex’enearest-neighbor Conngctions that
move from a given sité to an adjacent siteand the corre- are not taken into account in Van Siclen’s algorithm.

sponding average time interv@] over which this particular To demonstrate that Van Siclen’s algorithm does not cap-
move occurs. These are given m{,j:Bi,j+aiBi,j+a?ﬁi,j ture Fhe correct behaylor of j[qu-phase continuum systems,
2d 2d ~ consider two-dimensional digitized representations. Each
+oo =i/ (Zieapik), and Ti=72d/Z5 2, Pk, Whef,epiyj square pixel represents one of the phases and periodic
=(2d)~'p;; (since there are@possible directions gi=1  boundary conditions are applied to the entire sqisystem
—Efﬂlﬁiyj is the probability of unsuccessful interface cross-unit cell. Consider now one of the simplest continuum sys-
ings, andr=(4d) ! is the time interval unif1,6]. The pro- tems with natural square discretizatiapregular two-phase
posed simple lattice walker method is attractive since it cartheckerboard with phase conductivitieg andog . Itis well
be implemented easily and efficiently. known that the effective conductivity of this systéas well
However, Van Siclen claims that the method is also apas the random checkerboards exactly given by o,
plicable to continuum systems as well as to its digitized rep= \oaog [10]. Let the pixels cells coincide with the check-
resentationgl]. In the following, we show that the peculiari- erboard cells. We now show that application of Van Siclen’s
ties of the continuum system@ligitized or noj are not algorithm to this situation leads to an incorrect re§ilt]. In
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this simple case, it is straightforward to calculate the prob- L0 - - -

ability P;; and timeT;. Because of the regularity of the

checkerboard, one has tha®;;=1/4, and Ta=7(oa go'g a ]
+og)log or Tg=1(op+ o)/ oa, depending on the starting g” 06 L ]
point of the walker. Thus, in this particular case, Van Si- )

clen’s procedure is exactly solvable, and gives, o4l ]
=20p0g/(0a+ 0g), Which we see is incorrect. If the ratio o

oglo, differs significantly from unity, this result signifi- T o2l :
cantly underestimates, since transport through corners is

not included. For example, for,=1 andog= 100, the ex- 0.0 s s ye s
act result yieldso.=10, whereas the resuti,=20 07/ L

(oa+ 0g) giveso,=200/10%1.98.
Of course, the continuum system is better approximated FIG. 1. Effective conductivity of a two-dimensional, two-phase

by a lattice random-walk model if the spatial resolution of regular checkerboard with phase conductivities=1, o= 100.

the lattice used to discretize the system is increased. This iEhe normalized difference between the finite-difference and exact

also true for a conventional finite-difference computation."€SUltoexaci= (7ace) ¥ is shown as a function of the resolutién

The connection between these two techniques is well estaySed in the finite-difference method.

lished. In the limit when the number of sampled random

walk paths goes to infinity, the solution of the lattice

random-walk model isdentical to that obtained from an

exact solution of the finite-difference representafi@g]. It . "

is therefore useful to analyze the dependence of the conf? Ret. [1] canr_lqt_be utilized gene_rally to compute transport
puted finite-difference results on the lattice resolution used irﬁgoggtt:;g %gdgﬁelgsrse[;rstizrl]t?gr?t?ﬁu?jrr?ocrg;;]ug;]tgsn']r%%s;e
the calculations. These results also represent the most accéjr_e ver éneral random-walk methods bazed oﬁ first.
rate results if the probabilistic lattice model based on the y 9 . :
same discretization scheme is used. passage time equations to compute the transport properties of

To illustrate the limitations of standard network discreti- continuum composite materilld,5|. Referencs] provides

zations in the calculation of transport properties of con-2 theoretical foundation for the first-passage time equations

tinuum systems, we have calculated the effective conductivl-Jseci in Ref.[4] and shows how to apply the analysis to

ity of the two-dimensional regular checkerboard for variousg:%'tt&zd Ccaonmg;l:fergtlsyigerpusréTt?]'g g?fzg?%l;rntgir;ﬂ%m'\gsﬂ(
grid resolutions. Each square cell of the checkerboard is dis- y cap 9

cretized by arL XL grid. The results for a modest contrast hers,” which is very imp_or_tant for certain morphologiesz
. " s : - such as those characteristic of systems at the percolation
ratio o,/0g=100, obtained by employing the finite-

. . . oS : threshold. The differences between discrete lattice and con-
difference method with a conjugate gradient iterative proce;

dure, are shown in Fig. 1. We note that the=1 result :g‘nlf':r%;n g;j ﬂ:a?r;:\/zr:cg{gg;ir tlr:]rehsl%&%r]—dlmensmnal Sys-
matches the aforementioned Van Siclen’s result for that case, P '

as expected. The approach to the exact value with increasing This work was supported by the Engineering Research
L is quite slow. By increasing the contrast ratio, the discrepProgram of the Office of Basic Energy Science at the De-
ancy is even greater. In the extreme limif/og— 0 or =, partment of Energy under Grant No. DE-FG02-92E4275.

the finite-difference methotbr Van Siclen’s methodis not
applicable to the checkerboard problem.
In conclusion, the lattice random-walk method proposed
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