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In a recent paper@C. DeW. Van Siclen, Phys. Rev. E59, 2804 ~1999!#, a random-walk algorithm was
proposed as the best method to calculate transport properties of composite materials. It was claimed that the
method is applicable both to discrete and continuum systems. The limitations of the proposed algorithm are
analyzed. We show that the algorithm does not capture the peculiarities of continuum systems~e.g., ‘‘necks’’
or ‘‘choke points’’! and we argue that it is the stochastic analog of the finite-difference method.

PACS number~s!: 05.60.2k, 44.30.1v, 91.60.Pn, 66.30.2h
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Van Siclen has presented a lattice random-walk metho
calculate the transport properties of discrete models of c
posite materials@1#. The method belongs to a broad class
discrete Brownian walker diffusion models that have be
extensively studied@2#. Considering a density of walke
populations in distinct phase domains, Van Siclen utilized
expression for the probabilitypi , j that the walker success
fully moves across a domain boundary from phasei to phase
j @3#: pi , j5s j /(s i1s j ), wheres i , s j are the corresponding
local conductivities. Then theeffectiveconductivityse of a
d-dimensional composite medium can be readily obtain
monitoring the walker displacementsRi and associated mea
time intervals t i in each visited phase, sincese

5( iRi
2/( i(2dt is i

21) @1,2,4,5#.
For practical calculations, Van Siclen introduced a co

putationally efficient ‘‘variable residence time algorithm’’ i
which each walker attempts to move to one of the adjac
two-dimensional~2D! sites is always successful but it takes
variable time interval to accomplish it. The algorithm r
quires knowledge of the probabilityPi , j for a successful
move from a given sitei to an adjacent sitej and the corre-
sponding average time intervalTi over which this particular
move occurs. These are given byPi , j5 p̃i , j1q̃i p̃i , j1q̃i

2p̃i , j

1•••5pi , j /((k51
2d pi ,k), andTi5t2d/(k51

2d pi ,k , where p̃i , j

5(2d)21pi , j ~since there are 2d possible directions!, q̃i51
2( j 51

2d p̃i , j is the probability of unsuccessful interface cros
ings, andt5(4d)21 is the time interval unit@1,6#. The pro-
posed simple lattice walker method is attractive since it
be implemented easily and efficiently.

However, Van Siclen claims that the method is also
plicable to continuum systems as well as to its digitized r
resentations@1#. In the following, we show that the peculiar
ties of the continuum systems~digitized or not! are not
PRE 611063-651X/2000/61~4!/4659~2!/$15.00
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captured by his algorithm. Moreover, his proposed proced
is the stochastic analog of the standard finite-differen
method. Thus, Van Siclen’s claim that his method is the o
viable and best ‘‘exact’’ method to compute transport pro
erties@1# is not the case and has the same limitations as
finite-difference scheme.

It is known that the contribution from transport throug
very narrow ‘‘necks’’ or ‘‘choke points’’ that occur in con
tinuum systems can lead to effective transport properties
are dramatically different from lattice models@7–9#. Such
choke points become numerous and especially impor
near the percolation threshold. These contributions are
included in Van Siclen’s algorithm which involves a sta
dard discretization of the problem. Moreover, he equates
standard lattice walk with a continuum walk on a digitize
representation of a continuum system@1#. These two situa-
tions are indeed not the same for the aforementioned reas
i.e., transport in digitized media may be dominated by cho
or ‘‘corner’’ points that connect two diagonal pixel neigh
bors @8,9#. These arenext-nearest-neighbor connections th
are not taken into account in Van Siclen’s algorithm.

To demonstrate that Van Siclen’s algorithm does not c
ture the correct behavior of two-phase continuum syste
consider two-dimensional digitized representations. E
square pixel represents one of the phases and peri
boundary conditions are applied to the entire square~system!
unit cell. Consider now one of the simplest continuum s
tems with natural square discretization:q regular two-phase
checkerboard with phase conductivitiessA andsB . It is well
known that the effective conductivity of this system~as well
as the random checkerboard! is exactly given by se

5AsAsB @10#. Let the pixels cells coincide with the check
erboard cells. We now show that application of Van Sicle
algorithm to this situation leads to an incorrect result@11#. In
4659 © 2000 The American Physical Society
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this simple case, it is straightforward to calculate the pr
ability Pi , j and timeTi . Because of the regularity of th
checkerboard, one has thatPi , j51/4, and TA5t(sA

1sB)/sB or TB5t(sA1sB)/sA , depending on the startin
point of the walker. Thus, in this particular case, Van S
clen’s procedure is exactly solvable, and givesse
52sAsB /(sA1sB), which we see is incorrect. If the rati
sB /sA differs significantly from unity, this result signifi
cantly underestimatesse since transport through corners
not included. For example, forsA51 andsB5100, the ex-
act result yieldsse510, whereas the resultse52sAsB/
(sA1sB) givesse5200/101'1.98.

Of course, the continuum system is better approxima
by a lattice random-walk model if the spatial resolution
the lattice used to discretize the system is increased. Th
also true for a conventional finite-difference computatio
The connection between these two techniques is well es
lished. In the limit when the number of sampled rando
walk paths goes to infinity, the solution of the lattic
random-walk model isidentical to that obtained from an
exact solution of the finite-difference representation@12#. It
is therefore useful to analyze the dependence of the c
puted finite-difference results on the lattice resolution use
the calculations. These results also represent the most a
rate results if the probabilistic lattice model based on
same discretization scheme is used.

To illustrate the limitations of standard network discre
zations in the calculation of transport properties of co
tinuum systems, we have calculated the effective conduc
ity of the two-dimensional regular checkerboard for vario
grid resolutions. Each square cell of the checkerboard is
cretized by anL3L grid. The results for a modest contra
ratio sA /sB5100, obtained by employing the finite
difference method with a conjugate gradient iterative pro
dure, are shown in Fig. 1. We note that theL51 result
matches the aforementioned Van Siclen’s result for that c
as expected. The approach to the exact value with increa
L is quite slow. By increasing the contrast ratio, the discr
ancy is even greater. In the extreme limitsA /sB→ 0 or `,
s.
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the finite-difference method~or Van Siclen’s method! is not
applicable to the checkerboard problem.

In conclusion, the lattice random-walk method propos
in Ref. @1# cannot be utilized generally to compute transp
properties of digitized representations of continuum comp
ite materials, much less actual continuum composites. Th
are very general random-walk methods based on fi
passage time equations to compute the transport properti
continuum composite materials@4,5#. Reference@5# provides
a theoretical foundation for the first-passage time equati
used in Ref.@4# and shows how to apply the analysis
digitized continuum systems. This continuum random-w
method can correctly capture the effect of ‘‘touching co
ners,’’ which is very important for certain morphologie
such as those characteristic of systems at the percola
threshold. The differences between discrete lattice and c
tinuum models are even greater in higher-dimensional s
tems (d.2) near the percolation threshold@7#.

This work was supported by the Engineering Resea
Program of the Office of Basic Energy Science at the D
partment of Energy under Grant No. DE-FG02-92E4275.

FIG. 1. Effective conductivity of a two-dimensional, two-pha
regular checkerboard with phase conductivitiessA51, sB5100.
The normalized difference between the finite-difference and ex
resultsexact5(sAsB)1/2 is shown as a function of the resolutionL
used in the finite-difference method.
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